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Abstract. In this paper, we review the main challenges associated with the statistical mechanics of finite
systems, with a particular emphasis on the present understanding of phase transitions in the framework
of information theory. We show that this is a very powerful formalism allowing to treat in a thermody-
namically consistent way many difficult problems in the statistical treatment of finite, open, transient and
expanding systems. The first point we analyze is the problem of boundary conditions, which in the frame-
work of information theory must also be treated statistically. We recall that the different ensembles do not
lead to the same equation of states, in particular in the region of a first-order phase transition, and we
stress the fact that different statistical ensembles may be relevant to heavy-ion physics depending upon the
actual experimental conditions. Finally, we present a coherent description of first-order phase transitions
demonstrating the equivalence between the Yang-Lee theorem, the occurrence of bimodalities in the in-
tensive ensemble and the presence of inverted curvatures of the thermodynamic potential of the extensive
ensemble. We stress that this discussion is not restricted to the possible occurrence of negative specific
heat, but can also include negative compressibilities and negative susceptibilities, and in fact any curvature
anomaly of the thermodynamic potential. Since the relevant entropy surface explored in nuclear multifrag-
mentation is not yet well understood and largely debated in the community, the experimental evidence of
new thermodynamic anomalies is one of the important challenges of future heavy-ion experiments.

PACS. 05.20.Gg Classical ensemble theory – 25.70.Pq Multifragment emission and correlations – 64.60.-i
General studies of phase transitions – 65.40.Gr Entropy and other thermodynamical quantities

1 Introduction

Finite-systems properties, non-extensive thermodynam-
ics, and phase transitions out of the thermodynamic limit
are strongly debated issues in many different fields of
physics (see for example [1]). This may be the case of
non-saturating forces such as the gravitational [2–5] or
the Coulombic forces. The system may be too small, as
in the case of clusters and nuclei [6–9]. The physics of fi-
nite systems is even more complicated since often they are
not only small but also open and transient. This implies
that the various concepts of thermodynamics and statis-
tical mechanics [10–13] have to be completed and revis-
ited [1,14–18]. Another contribution to this topical issue
deals with some aspects of this question [19] and we ad-
dress the reader to that paper to have a more complete
view of the different formalisms that can be applied. In
the present paper, we focus on the information theory ap-
proach to statistical mechanics [14,16] and we will show
that this is a very powerful formalism that allows to ad-
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dress in a consistent way the statistical mechanics of open
systems evolving in time, independent of their interaction
range and number of constituents.

After a short summary of the statistical-physics con-
cepts, we will summarize the discussion about ensem-
ble inequivalence. Statistical ensembles are presented in
many elementary textbooks as qualitatively equivalent
and quantitatively almost identical, because they differ
only at the fluctuation level. However, for finite systems it
is now well documented in the literature [18,20–23] that
two ensembles which put different constraints on the fluc-
tuations of the order parameter lead to qualitatively dif-
ferent equations of state close to a first-order phase tran-
sition.

This will lead us to the discussion of phase transitions
in finite systems. As an example, when energy is the or-
der parameter, the microcanonical (at fixed energy) heat
capacity diverges to become negative while the canonical
one (at fixed temperature) remains always positive and fi-
nite [24–36]. If the number of particle is the order param-
eter, it is the chemical susceptibility which is expected to
present a negative branch in between two divergences in
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the fixed number of particle ensemble (microcanonical or
canonical) while in the grand canonical it should remain
positive. This difference between ensembles can be of pri-
mordial importance for mesoscopic systems undergoing a
phase transition. Such systems are now studied in many
fields of physics, from Bose condensates [37,38] to the
quark-gluon plasma [39,40], from cluster melting [6,41] to
nuclear fragmentation [7]. Moreover, such inequivalences
may survive at the infinite size limit for systems involving
long-range forces such as self-gravitating objects [3–5].

We will then present some basic characteristics of first-
order phase transitions in finite systems. In particular, we
will summarize the mathematical connections between the
Yang-Lee approach [42] through the zeroes of the partition
sum, the bimodality of the order parameter distribution
in the same ensemble, and the anomalous (inverted) cur-
vature of the thermodynamic potential of the ensemble
where the order parameter is fixed [43–45]. The best doc-
umented example in the literature is the bimodality of the
canonical energy distribution being equivalent to negative
microcanonical heat capacity [46–48].

Finally, we will skim over the time evolution problem,
stressing the need to take into account time odd constraint
in the statistical picture, and then conclude presenting
three challenges for the field of the thermodynamic prop-
erties of finite systems.

2 Finite systems and statistical mechanics

A largely debated issue in the nuclear-physics community
is the applicability of thermodynamical concepts like equi-
librium, temperature, pressure etc. to objects as tiny as
nuclei. How large must a system be for a temperature to be
defined? It is well known that the different statistical en-
sembles only converge in the thermodynamic limit: out of
this limit, what is the physical meaning of thermodynamic
quantities —say, temperature— evaluated through differ-
ent ensembles? is there a “correct” ensemble to be used?
We all know finite systems can change state or shape, a
typical example being the case of isomerization; how many
degrees of freedom do we need in order to call this change
of state a phase transition?

Let us consider a system that can exist in two single
microstates of different energy (a single spin in a mag-
netic field, a two-level atom in a bath of radiation. . .) The
system being much smaller than its environment, let us
consider the case for which the interaction between sys-
tem and environment can be neglected and we have no
reason to believe that the environment will be in any spe-
cific state. Then the distribution of the system microstates
is simply given by the number of states of the environment

p(n) = W (Et − en)/(W (Et − e1) +W (Et − e2))

∝ exp (S(Et − en)) , (1)

where Et is the total energy (system + environment) and
S = logW is the (microcanonical) entropy associated with
the environment. Since en ¿ Et, a Taylor expansion of the

entropy gives

S(Et − en) ≈ S(Et)− en
∂S

∂E
(Et) ; p(n) ∝ exp (−βen) ,

(2)
where we have introduced β = ∂S∂E, the temperature of
the environment.

This very simple textbook exercise gives us a number
of interesting informations:

– thermodynamic concepts like temperature can be de-
fined for systems having an arbitrary number of de-
grees of freedom (the minimum being 2 levels);

– Boltzmann-Gibbs statistics naturally emerges as soon
as we observe a limited information constructed from
a reduced number of degrees of freedom.

If we now take into account a slightly more complicated
system with energy states associated with a degeneracy
w(e), the energy distribution will be modified to

p(e) =
w(e)W (Et − e)

∑

n w(en)W (Et − en)
≈ w(e) exp (−βe)

Zβ
, (3)

where the canonical approximation is still correct if the
system is associated with a much smaller number of de-
grees of freedom than its environment. Equation (3) gives
for instance the energy distribution of a thermometer
loosely coupled to an otherwise isolated system. Temper-
ature is defined as the response of the thermometer in the
most probable energy state e; if we maximize the distri-
bution (3) we get, assuming that energy can be treated as
a continuous variable,

∂ logW

∂E
|Et−e =

∂ logw

∂E
|e . (4)

We then learn that the quantity shared at the most
probable energy partition is the microcanonical tempera-
ture. This shows that there is no ambiguity in the defini-
tion of temperature (and any other thermodynamic quan-
tity) when dealing with small systems. It is important to
note that eq. (3) is not limited to the observation of en-
ergy, but can apply to the distribution of any generic ob-
servable A = 〈Â〉. We can then expect that canonical-like
ensembles (i.e. ensembles where distributions are given by
Boltzmann factors) will arise each time that we are iso-
lating a small number of degrees of freedom from a more
complex system.

More generally, we will recall in the next section that a
statistical description is in order each time that the system
is complex enough to have a large number of microstates
associated with a given set of relevant observables. The
proper statistical ensemble will then depend on the way
the system is prepared. If the relevant observables are rec-
ognized, equilibrium is therefore a very generic concept
that certainly applies to the output of a heavy-ion colli-
sion independent of the reaction time.

3 Statistical physics and information theory

Information-theory–based statistical mechanics provides a
very powerful framework to a consistent treatment of the
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Fig. 1. Illustration of the Liouville space of density matrices:
an observation 〈Âi〉 is a projection of D̂ on the axis associated

with the corresponding observable Âi.

thermodynamics of finite systems both in the classical and
in the quantal world [16,14]. Let us summarize here the
essential ingredients. Statistical physics treats statistical
ensembles of possible solutions for the considered physical
system since the assumption is made that we have only
a limited knowledge on it. Such a “macrostate” can be
formally be represented by its density matrix

D̂ =
∑

(n)

∣

∣

∣
Ψ (n)

〉

p(n)
〈

Ψ (n)
∣

∣

∣
, (5)

where the states (“microstates”, or “partitions”, or “repli-
cas”, or simply “events”) |Ψ (n)〉 pertain to the considered
Fock or Hilbert space. p(n) is the occurrence probability
of the event |Ψ (n)〉. The result of the measurement of an

observable Â is
〈Â〉D̂ = Tr ÂD̂, (6)

where Tr means the trace over the quantum Fock or
Hilbert space of states {|Ψ〉}.

In the space of Hermitian matrices, the trace provides
a scalar product [49,50]

〈〈Â||D̂〉〉 = Tr ÂD̂. (7)

It is then possible to define an orthonormal basis of Hermi-
tian operators {Ôl} in the observable space, and to inter-

pret the measurement 〈Ôl〉D̂ as a coordinate of the density

matrix D̂ (see fig. 1). The size of the observable space is
the square of the dimension of the Hilbert or Fock space,
which are in general infinite; therefore in order to describe
the system, one is forced to consider a reduced set of (col-

lective) observables {Â`} which are supposed to contain
the relevant information. The Gibbs formulation of sta-
tistical mechanics can then be derived if the least biased
“macrostate” is assumed to be given by the maximization
of the entropy1

S[D̂] = −Tr D̂ log D̂, (8)

1 In this article we implicitly use units such that the Boltz-
mann constant k = 1.

which is nothing but the opposite of the Shannon informa-
tion [16,14]. It is important to stress that eq. (8) is a micro-
scopic definition of entropy which coincides with the stan-
dard thermodynamic entropy only after maximization, see
eq. (13) below.

If the system is characterized by L observables (or

“extensive” variables2), Â = {Â`}, known in average

〈Â`〉 = Tr D̂Â`, the variation is not free and one should
maximize the constrained entropy

S′ = S −
∑

`

λ`〈Â`〉, (9)

where the λ = {λ`} are L Lagrange multipliers associated

with the L constraints 〈Â`〉.
A maximization of the entropy under constraints gives

a prediction for the minimum-biased density matrix (or
“event distribution”) which can be viewed as a general-
ization of Gibbs equilibrium:

D̂λ =
1

Zλ
exp−λ · Â, (10)

where λ · Â =
∑L

`=1 λ`Â` and where Zλ is the associated

partition sum insuring the normalization of D̂λ:

Zλ = Tr exp−λ · Â. (11)

Using this definition, we can compute the associated
equations of state (EoS):

〈Â`〉 = ∂λ`
logZλ. (12)

The entropy associated with D̂λ is

S[D̂λ] = logZλ +
∑

`

λ`〈Â`〉, (13)

which has the structure of a Legendre transform between
the entropy and the thermodynamic potential. To inter-
pret the Gibbs ensemble as resulting from the contact with
a reservoir or to guarantee the stationarity of eq. (10), it

is often assumed that the observables Â` are conserved
quantities such as the energy Ĥ, the particle (or charge)

numbers N̂i or the angular momentum L̂ [19]. However,
there is no formal reason to limit the state variables to
constants of motion. Even more, the introduction of not
conserved quantities might be a way to take into account
some non-ergodic aspects. Indeed, an additional constraint
reduces the entropy, limiting the populated phase space or
modifying the event distribution. This point will be devel-
oped at length in the next sections.

2 In this paper the word “extensive” is used in the general
sense of resulting from an observation, i.e. the 〈Â`〉, and not
in the restricted sense of additive variable. Intensive variables
are conjugate to extensive variables i.e. Lagrange multipliers λ`

imposing the average value of the associated extensive variable.
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It should be noticed that microcanonical thermody-
namics also corresponds to a maximization of the en-
tropy (8) in a fixed energy subspace. In this case the max-
imum of the Shannon entropy can be identified with the
Boltzmann entropy

max (S) = logW (E) , (14)

where W is the total state density with the energy E. The
microcanonical case can also be seen as a particular Gibbs
equilibrium (10) for which both the energy and its fluctu-
ation are constrained. This so-called Gaussian ensemble in
fact interpolates between the canonical and microcanon-
ical ensembles depending upon the constraint on the en-
ergy fluctuation [24,51], and the same procedure can be
applied to any conservation law. In this sense the Gibbs
formulation (10) can be considered as the most general.

The ensemble of extensive variables constrained ex-
actly or in average completely defines the statistical en-
semble. This means that many different ensembles can be
defined, and the most appropriate description of a finite
system may be different from the standard microcanoni-
cal, canonical or grand-canonical.

4 Finite size and boundary conditions

An important problem when considering finite-size sys-
tems is the need to define boundary conditions to define
the finite size. This is only a mathematical detail for “con-
densed” systems, i.e. finite-size self-bound systems in a
much larger container, or particles trapped in an exter-
nal confining potential [52]. In the other cases, finite-size
systems can only be defined when proper boundary condi-
tions are specified. Conversely to the thermodynamic limit
which, when it exists, clearly isolates bulk properties in-
dependent of the actual shape of the container, finite-size
systems explicitly depend on boundary conditions.

From a mathematical point of view the system Hamil-
tonian Ĥ is not defined until boundary conditions are
specified. For example, for a particle problem a bound-
ary can be the definition of a surface given by the implicit
equation σ(x, y, z) = 0. Since the Hamiltonian Ĥσ explic-
itly contains the boundary, the entropy Sσ also directly
depends upon the definition of this boundary, according
to

Sσ(E) = log tr δ(E − Ĥσ). (15)

This brings a severe conceptual problem; the knowl-
edge of the boundary requires an infinite information:
the values of the function σ defining the actual sur-
face in each space point. This is easily seen introducing
the projector P̂σ over the surface and its exterior. In-
deed the boundary conditions applied to each microstate
P̂σ|Ψ (n)〉 = 0 is exactly equivalent to the extra constraint

〈P̂σ〉 = Tr D̂P̂σ = 0. If we note again Â, the observables

(including the Hamiltonian Ĥσ) characterizing a given
equilibrium, the density matrix including the boundary
condition reads

D̂λσ =
1

Zλσ
exp−λ · Â− bP̂σ , (16)

which shows that the thermodynamics of the system does
not only depend on the Lagrange multiplier b, but on the
whole surface. For the very same global features such as
the same average particle density or energy, we will have as
many different thermodynamics as boundary conditions.
More important, to specify the density matrix, the pro-
jector P̂σ has to be exactly known and this is in fact im-
possible. The nature of P̂σ is intrinsically different from
the usual global observables Â`. At variance with Â`, P̂σ
is a many-body operator which does not correspond to
any physical measurable observable. The knowledge of P̂σ
requires the exact knowledge of each point of the bound-
ary surface while no or few parameters are sufficient to
define Â`. If we consider statistical physics as founded by
the concept of minimum information [14,16], it is diffi-
cult to justify such an exact knowledge of the boundary.
One should rather apply the minimum information con-
cept also to the boundaries, introducing a hierarchy of col-
lective observables which define the size and shape of the
considered system. This amounts to introduce statistical
ensembles treating the boundaries as additional extensive
variables fixed by conjugated Lagrange parameters [53].
If, for instance, we consider that the relevant size infor-
mation for an unbound system is its global square radius
〈R̂2〉, the adequate partition sum is

Zλ =
∑

R

W (R) e−λR
2

, (17)

where W (R) is the state density associated with each pos-
sible value of the system radius.

5 Concept of equilibrium

As we have discussed in the previous sections, a statisti-
cal treatment is justified whenever a very large number
of microstates exists for a given set of observables. This
is always the case for the output of a heavy-ion collision,
meaning that at least in principle a statistical approach
should always be successful. An ensemble of events coming
from similary prepared initial systems and/or selected by
sorting always constitutes a statistical ensemble. Indeed,
using the entropy concept, different observations are as-
sociated with a different information content. If we are
able to recognize all the relevant degrees of freedom (i.e.
the observations with a strong information content) the
ensemble of replicas is by construction a statistical en-
semble, i.e. a Gibbs equilibrium in the extended sense of
sect. 3.

This generic statement hides the fundamental problem
of recognizing the relevant observables. In the statistical
models used to describe nuclear multifragmentation [54,
19] the hypothesis is made that all the information con-
tent is exhausted by the total energy, number of protons,
neutrons, volume occupied at the time when fragments are
decoupled, and in some cases angular momentum. This
simple set of observables is certainly not sufficient to de-
scribe the whole phenomenology of heavy-ion reactions at
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all impact parameters. Then the remark is often made
in the literature that “dynamical effects” dominate [55],
meaning that extra constraints have to be put in order to
have a statistical description of the final state of the reac-
tion. However, the minimal information of multifragmen-
tation statistical models [54,19] may be enough to describe
limited portions of the collision phase space (“sources”)
properly selected by sorting [56]. The theoretical justifi-
cation of this minimal statistical picture comes from the
fact that complex classical systems subject to a non-linear
dynamics are generally mixing [57]. In such a case the sta-
tistical ensemble is created by the propagation in time of
initial fluctuations. The averages are averages over the ini-
tial conditions and the mixing character of the dynamics
(if it can be proved) insures that the initial fluctuations are
amplified in such a way that the ensemble of events covers
the whole phase space uniformly3. For a classical dynamics
which conserves the phase space volume of the ensemble of
events, this means that the initial distribution is elongated
and folded in such away that it gets close to any point of
the phase space (the so-called baker transformation). This
classical picture can be replaced in the quantum case by
the idea of projection of irrelevant correlations [50]. The
phase space can be described as a subspace of all possi-
ble observations. The regular quantum dynamics in the
full space is transformed into a complex dynamics by the
projection in the relevant observation subspace. Then two
different realizations corresponding to the same projec-
tion, i.e. the same point in the relevant space, may dif-
fer in the full space (and consequently in their successive
evolution) because of the unobserved correlations. This
ensemble of correlations may lead to a statistical ensem-
ble of realizations after a finite time. This phenomenon is
often described introducing stochastic dynamics, i.e. as-
suming that the unobserved part of the dynamics which
is averaged over is a random process [58,59].

5.1 How far is the system from equilibrium

An important point to be discussed is the justification
of the statistical description. As we have just mentioned,
the applicability of a statistical picture is in most cases
an hypothesis (or a principle like in the thermodynamics
second law). Therefore, the equilibrium hypothesis should
be a posteriori controlled. Different properties can provide
tests of equilibration such as

– the comparison with statistical models,
– the consistency of thermodynamical quantities,

namely the compatibility of the different inten-
sive variables measurements (e.g., of the different
thermometers) or the fulfillment of thermodynamic
relations between averages and fluctuations (e.g.,
σ2A`

= ∂2 logZλ/∂λ
2
` = −∂〈A`〉/∂λ`),

– the memory loss or the independence of the results on
the preparation method of the considered ensemble.

3 Meaning that any phase space point gets close to at least
one event.

However, it should be stressed that the real question is not
whether the system is at equilibrium, but rather how far
it is from a given equilibrium. Indeed, equilibrium is not
unique in a finite system, and moreover exact equilibrium
is a theoretical abstraction which cannot be achieved in
the real world. To answer this question we should define
a distance. The first idea could be to use the Liouville
metric

d2eq = tr
(

D̂ − D̂λ

)2

(18)

between the actual ensemble characterized by the density
matrix D̂, and the equilibrium one D̂λ computed for the
same collective variables 〈A`〉. This is a nice theoretical
tool, but a rather difficult definition as far as experiments
are concerned. Another possibility is to introduce entropy
as a metric [58]

deq =
∣

∣

∣
S[D̂]− S[D̂λ]

∣

∣

∣
/S[D̂λ]. (19)

This is a way to measure how far the system is from
the maximum entropy state or in other words to measure
how much information on the actual system is included in
the collective variables {〈A`〉} and how much is out of the
considered equilibrium. This is a more physical distance
but again it is difficult to implement in real experimental
situations. A more practical measurement of the distance
to equilibrium is to focus on the information used to de-
duce physical properties. Since the information about the
actual system is contained in the observations 〈Ôi〉, the
natural space to introduce this distance is the observa-
tion space. This is a formally well-defined problem since
considering Tr ÔiÔj as the scalar product between observ-
ables, the observation space has a well-defined topology.
Then, when orthogonal observables are considered4, the
distance to equilibrium is simply

di =
∣

∣

∣
〈Ôi〉 − 〈Ôi〉eq

∣

∣

∣
. (20)

A typical example is given by the difference between
the measured fluctuations σ2A`

= 〈A2
`〉− 〈A`〉2 and the ex-

pected ones σ2A`
= −∂〈A`〉/∂λ` in the ensemble controlled

by the λ`.

6 Finite systems and ensemble inequivalence

We have discussed that many different statistical ensem-
bles can be defined when one considers finite systems.
A fundamental theorem in statistical mechanics, the Van
Hove theorem [60] (see appendix), guarantees the equiv-
alence between different statistical ensembles at the ther-
modynamic limit. However the theorem does not apply in
finite systems. In fact, it is strongly violated in first-order
phase transitions if the system is finite, and this violation
can persist up to the thermodynamic limit in the case of

4 If observables are not orthogonal it is alway possible to
use a Schmitt procedure to define a set of orthogonal observ-
ables [16].
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long-range forces. A consequence of that is that it is pos-
sible to give a rigorous definition of phase transitions even
in finite systems, with the prediction of fancy phenom-
ena like negative heat capacities, negative compressibili-
ties and negative susceptibilities. The non-equivalence of
statistical ensembles has also important conceptual conse-
quences. It implies that the value of thermodynamic vari-
ables for the very same system depends on the type of
experiment which is performed (i.e. on the ensemble of
constraints which are put on the system), contrary to the
standard thermodynamic viewpoint that water heated in
a kettle is the same as water put in an oven at the same
temperature. Ensemble inequivalence is the subject of an
abundant literature (see, for example, refs. [22,23,25–30]
for a discussion in a general context, and refs. [31–36] con-
cerning phase transitions).

Generally speaking, for a given value of the control
parameters (or intensive variables) λ`, the properties of a
substance are univocally defined, i.e. the conjugated ex-

tensive variables 〈Â`〉 have a unique value unambiguously
defined by the corresponding equation of state (〈A`〉 =
−∂λ`

logZ({λ`})). In reality, this fixes only the average
value and the event-by-event value of the observation of
Â` produces a probability distribution. The intuitive ex-
pectation that extensive variables at equilibrium have a
unique value therefore means that the probability distri-
bution is narrow and normal, such that a good approxi-
mation can be obtained by replacing the distribution with
its most probable value. The normality of probability dis-
tributions is usually assumed on the basis of the central
limit theorem. However, in finite systems the probability
distributions has a finite width and moreover it can depart
from a normal distribution. We will discuss in particular
the case of a bimodal distribution [43]: in this case two
different properties (phases) coexist for the same value of
the intensive control variable.

The topological anomalies of probability distributions
and the failure of the central limit theorem in phase co-
existence imply that in a first-order phase transition the
different statistical ensembles are in general not equiva-
lent and different phenomena can be observed depending
on the fact that the controlled variable is extensive or in-
tensive. In the following, we will often take as a paradigm
of intensive ensembles the canonical ensemble for which
the inverse of the temperature β−1 is controlled, while
the archetype of the extensive ensemble will be the micro-
canonical one for which energy is strictly controlled.

6.1 The difference between Laplace and Legendre

The relation between the canonical entropy and the loga-
rithm of the partition sum is given by a Legendre trans-
form eq. (13). It is important to distinguish between
transformations within the same ensemble, as the Leg-
endre transform, and transformations between different
ensembles, which are given by non-linear integral trans-
forms [35]. Let us consider energy as the extensive observ-
able and inverse temperature β as the conjugated intensive

one. The definition of the canonical partition sum is

Zβ =
∑

n

exp(−βE(n)), (21)

where the sum runs over the available eigenstates n of the
Hamiltonian. Here, we assume that the partition sum con-
verges; this is not always the case as discussed in ref. [61].
The possible divergence of the thermodynamic potential of
the intensive ensemble is already a known case of ensemble
inequivalence [19,61]. Computing the canonical (Shannon)
entropy, we get

Scan(〈E〉) = logZβ + β〈E〉, (22)

which is an exact Legendre transform since the EoS reads
〈E〉 = −∂β logZβ . If energy can be treated as a continuous
variable, eq. (21) can be written as

Zβ =

∫

∞

0

dE W (E) exp(−βE), (23)

where energies are evaluated from the ground state. Equa-
tion (23) is a Laplace transform between the canonical
partition sum and the microcanonical density of states
linked to the entropy by SE = lnW (E). If the integrand
f(E) = exp(EE−βE) is a strongly peaked function, it can
be approximated by a Gaussian (saddle point approxima-
tion) so that the integral can be replaced by the maximum
f(Ē) times a Gaussian integral. Neglecting this factor, we
get

Zβ ≈W (Ē) exp(−βĒ), (24)

which can be rewritten as

lnZβ ≈ SĒ − βĒ; (25)

or introducing the free energy FT = −β−1 lnZβ ,

FT ≈ Ē − TSĒ . (26)

Equation (25) has the structure of an approximate
Legendre transform similar to the exact expression (22).
This shows that in the lowest-order saddle point approx-
imation eq. (24), the ensembles differing at the level of
constraints acting on a specific observable (here energy)
lead to the same entropy, i.e. they are equivalent. We will
see in the next section that, however, the saddle point
approximation eq. (24) can be highly incorrect close to a
phase transition for the simple reason that the integrand is
bimodal making a unique saddle point approximation in-
adequate. In this case eq. (25) cannot be applied, eq. (23)
is the only correct transformation between the different
ensembles, and ensemble inequivalence naturally arises.

6.2 Ensemble inequivalence and phase transitions

Let us consider the case of a first-order phase transition
where the canonical energy distribution

Pβ0
(E) = W (E) exp(−β0E)/Zβ0

(27)
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has a characteristic bimodal shape [43,46,47] at the tem-

perature β0 with two maxima E
(1)

β , E
(2)

β that can be asso-
ciated with the two phases. It is easy to see that eq. (23)
can also be seen as a Laplace transform of the canonical
probability Pβ0

(E)

Zβ = Zβ0

∫

∞

0

dE Pβ0
(E) exp(−(β − β0)E). (28)

A single saddle point approximation is not valid when
Pβ0

(E) is bimodal; however it is always possible to write

Pβ = m
(1)
β P

(1)
β +m

(2)
β P

(2)
β , (29)

with P
(i)
β mono-modal normalized probability distribution

peaked at E
(i)

β . The canonical mean energy is then the
weighted average of the two energies

〈E〉β = m̃
(1)
β E

(1)

β + m̃
(2)
β E

(2)

β , (30)

with

m̃
(i)
β = m

(i)
β

∫

dEP
(i)
β (E)E/E

(i)

β ' m
(i)
β . (31)

Since only one mean energy is associated with a given
temperature β−1, the canonical caloric curve is monotonic,
and the microcanonical one is not. Indeed it is immediate
to see from eq. (27) that the bimodality of Pβ implies
then a back bending of the microcanonical caloric curve
T−1 = ∂ES, meaning that in the first-order phase transi-
tion region the two ensembles are not equivalent. If instead
of looking at the average 〈E〉β we look at the most prob-

able energy Eβ , this (unusual) canonical caloric curve is
identical to the microcanonical one, up to the transition
temperature β−1t for which the two components of Pβ(E)
have the same height. At this point the most probable en-
ergy jumps from the low- to the high-energy branch of the
microcanonical caloric curve.

The question arises whether this violation of ensem-
ble equivalence survives towards the thermodynamic limit.
This limit can be expressed as the fact that the thermody-
namic potentials per particle converge when the number
of particles N goes to infinity:

fN,β = β−1
logZβ
N

→ f̄β ; sN (e) =
S(E)

N
→ s̄ (e) , (32)

where e = E/N . Let us also introduce the reduced prob-
ability pN,β(e) = (Pβ(N,E))1/N which then converges to-
wards an asymptotic distribution

pN,β (e)→ p̄β (e) ; p̄β (e) = exp
(

s̄(e)− βe+ f̄β
)

. (33)

Since Pβ(N,E) ≈ (p̄β(e))
N , one can see that when p̄β(e) is

normal, the relative energy fluctuation in Pβ(N,E) is sup-

pressed by a factor 1/
√
N . At the thermodynamic limit

Pβ reduces to a δ-function and ensemble equivalence is

recovered. To analyze the thermodynamic limit of a bi-
modal pN,β(e), let us introduce as before β

−1
N,t the temper-

ature for which the two maxima of pN,β(e) have the same

height. For a first-order phase transition β−1N,t converges

to a fixed point β̄−1t as well as the two maximum ener-

gies e
(i)
N,β → ē

(i)
β . For all temperatures lower (higher) than

β̄−1t only the low- (high-) energy peak will survive at the
thermodynamic limit, since the difference of the two max-
imum probabilities will be raised to the power N . There-

fore, below ē
(1)
β and above ē

(2)
β the canonical caloric curve

coincides with the microcanonical one in the thermody-
namic limit. In the canonical ensemble the temperature
β̄−1t corresponds to a discontinuity in the state energy ir-

respectively of the behavior of the entropy between ē
(1)
β

and ē
(2)
β .

The microcanonical caloric curve in the phase tran-
sition region may either converge towards the Maxwell
construction, or keep a backbending behavior [21], since a
negative heat capacity system can be thermodynamically
stable even in the thermodynamic limit if it is isolated [25].
Examples of a backbending behavior at the thermody-
namic limit have been reported for a model many-body
interaction taken as a functional of the hypergeometric
radius in the analytical work of ref. [3], and for the long-
range Ising model [4]. This can be understood as a general
effect of long-range interactions for which the topological
anomaly leading to the convex intruder in the entropy
is not cured by increasing the number of particles [4,62].
Conversely, for short-range interactions [15] the backbend-
ing is a surface effect which should disappear at the ther-
modynamic limit. This is the case for the Potts model [32],
the microcanonical model of fragmentation of atomic clus-
ters [63] and for the lattice gas model with fluctuating vol-
ume [48]. The interphase surface entropy goes to zero as
N → ∞ in these models, leading to a linear increase of
the entropy in agreement with the canonical predictions.

Within the approach based on the topology of the
probability distribution of observables [43] it was shown
that ensemble inequivalence arises from fluctuations of
the order parameter [22]. Ensembles putting different con-
straints on the fluctuations of the order parameter lead to
a different thermodynamics. In the case of phase tran-
sitions with a finite latent heat, the total energy usu-
ally plays the role of an order parameter except in the
microcanonical ensemble which, therefore, is expected to
present a different thermodynamics than the other ensem-
bles [19]. This inequivalence may remain at the thermo-
dynamic limit if the involved phenomena are not reduced
to short-range effects.

6.3 Temperature jump at constant energy

In particular, it may happen that the energy of a subsys-
tem becomes an order parameter when the total energy
is constrained by a conservation law or a microcanonical
sorting. This frequently occurs for Hamiltonians contain-
ing a kinetic energy contribution [3,4,64]: if the kinetic
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heat capacity is large enough, it becomes an order pa-
rameter in the microcanonical ensemble. Then, the micro-
canonical caloric curve presents at the thermodynamical
limit a temperature jump in complete disagreement with
the canonical ensemble.

To understand this phenomenon, let us consider a fi-
nite system for which the Hamiltonian can be separated
into two components E = E1+E2, that are statistically in-
dependent (W (E1, E2) = W1(E1)W2(E2)) and such that
the associated degrees of freedom scale in the same way
with the number of particles; we will also consider the case
where S1 = logW1 has no anomaly while S2 = logW2

presents a convex intruder [15] which is preserved at the
thermodynamic limit. Typical examples of E1 are given
by the kinetic energy for a classical system with velocity-
independent interactions, or other similar one-body oper-
ators [4]. The probability to get a partial energy E1 when
the total energy is E is given by

PE (E1) = exp (S1 (E1) + S2 (E − E1)− S (E)) . (34)

The extremum of PE(E1) is obtained for the partition-
ing of the total energy E between the kinetic and potential
components that equalizes the two partial temperatures

T1
−1

= ∂E1
S1(E1) = ∂E2

S2(E − E1) = T2
−1
. (35)

If E1is unique, PE(E1) is mono-modal and we can use a
saddle point approximation around this solution to com-
pute the entropy

S (E) = log

∫ E

−∞

dE1 exp (S1 (E1) + S2 (E − E1)) . (36)

At the lowest order, the entropy is simply additive so
that the microcanonical temperature of the global sys-

tem ∂ES(E) = T
−1

is the one of the most probable en-
ergy partition. Therefore, the most probable partial en-
ergy E1 acts as a microcanonical thermometer. If E1 is
always unique, the kinetic thermometer in the backbend-
ing region will follow the whole decrease of temperature
as the total energy increases. Therefore, the total caloric
curve will present the same anomaly as the potential one.
If, conversely, the partial energy distribution is double
humped [65], then the equality of the partial tempera-

tures admits three solutions, one of them E
(0)

1 being a
minimum. At this point, the partial heat capacities

C−11 = −T 2
∂2E1

S1
(

E
(0)

1

)

; C−12 = −T 2
∂2E2

S2
(

E − E
(0)

1

)

(37)
fulfill the relation

C−11 + C−12 < 0 . (38)

This happens when the potential heat capacity is nega-
tive and the kinetic energy is large enough (C1 > −C2) to
act as an approximate heat bath: the partial energy distri-
bution PE(E1) in the microcanonical ensemble is then bi-
modal as the total energy distribution Pβ(E) in the canon-
ical ensemble, implying that the kinetic energy is the order

Fig. 2. Left panels: temperature as a function of the poten-
tial energy E2 (full lines) and of the kinetic energy E − E2

(dot-dashed lines) for two model equation of states of classi-
cal systems showing a first-order phase transition. Symbols:
temperatures extracted from the most probable kinetic energy
thermometer from eq. (35). Right panels: total caloric curves
(symbols) corresponding to the left panels and thermodynamic
limit of eq. (39) (dashed lines).

parameter of the transition in the microcanonical ensem-
ble. In this case the microcanonical temperature is given
by a weighted average of the two estimations from the two
maxima of the kinetic energy distribution

T = ∂ES(E) =
P
(1)
σ(1)/T

(1)
+ P

(2)
σ(2)/T

(2)

P
(1)
σ(1) + P

(2)
σ(2)

, (39)

where T
(i)

= T1(E
(i)

1 ) are the kinetic temperatures calcu-

lated at the two maxima, P
(i)

= PE(E
(i)

1 ) are the prob-
abilities of the two peaks and σ(i) their widths. At the
thermodynamic limit eq. (38) reads c−11 + c−12 < 0, with
c = limN→∞ C/N . If this condition is fulfilled, the proba-
bility distribution Pβ(E) presents two maxima for all finite
sizes and only the highest peak survives at N =∞. Let Et

be the energy at which PEt
(E

(1)
) = PEt

(E
(2)

). Because
of eq. (39), at the thermodynamic limit the caloric curve
will follow the high- (low-) energy maximum of PE(E1) for
all energies below (above) Et; there will be a temperature
jump at the transition energy Et.

Let us illustrate the above results with two exam-
ples for a classical gas of interacting particles. For the ki-
netic energy contribution we have S1(E) = c1 ln(E/N)N

with a constant kinetic heat capacity per particle c1 =
3/2. For the potential part we will take two polynomial
parametrizations of the interaction caloric curve present-
ing a back bending which are displayed in the left part
of fig. 2 in units of an arbitrary scale ε. If the decrease
of the partial temperature T2(E2) is steeper than −2/3
(fig. 2a) then eq. (38) is verified [3] and the kinetic caloric
curve T1(E − E1) (dot-dashed line) crosses the potential
one T2(E2) (full line) in three different points for all values



P. Chomaz and F. Gulminelli: The challenges of finite-system statistical mechanics 325

Fig. 3. Canonical event distributions in the potential versus

kinetic energy plane (left panels) and total versus kinetic en-
ergy plane (right panels) at the transition temperature for the
two model equations of state of fig. 2. The inserts show two
constant total energy cuts of the distributions.

of the total energy lying inside the region of coexistence of
two kinetic energy maxima. The resulting caloric curve for
the whole system is shown in fig. 2b (symbols) together
with the thermodynamic limit (line) evaluated from the
double saddle point approximation eq. (39). In this case
one observes a temperature jump at the transition energy.
If the temperature decrease is smoother (fig. 2c) the shape
of the interaction caloric curve is preserved at the thermo-
dynamic limit (fig. 2d).

The occurrence of a temperature jump in the thermo-
dynamic limit is easily spotted by looking at the bidimen-
sional canonical event distribution Pβ(E1, E2) shown at
the transition temperature β = βt in the left part of fig. 3
for the two model equation of states of fig. 2. In the canon-
ical ensemble the kinetic energy distribution is normal.
These same distributions are shown as a function of E and
E1, Pβ(E,E1) ∝ expS1(E1) expS2(E − E1) exp(−βE) in
the right part of fig. 3. The microcanonical ensemble is a
constant energy cut of Pβ(E,E1), which leads to the mi-
crocanonical distribution PE(E1) within a normalization
constant. If the anomaly in the potential equation of state
is sufficiently important, the distortion of events due to
the coordinate change is such that one can still see the
two phases coexist even after a sorting in energy.

7 Definitions of phase transitions

Phase transitions are universal properties of matter in in-
teraction. In macroscopic physics, they are singularities
(i.e. non-analytical behaviors) in the system equation of
state (EoS) and hence classified according to the degree of
non-analyticity of the EoS at the transition point. Then,
a phase transition is an intrinsic property of the system

and not of the statistical ensemble used to describe the
equilibrium. Indeed, at the thermodynamic limit all the
possible statistical ensembles converge towards the same
EoS (see appendix), and the various thermodynamic po-
tentials are related by simple Legendre transformations
leading to a unique thermodynamics. On the other side
for finite systems, as discussed above, two ensembles which
put different constraints on the fluctuations of the order
parameter lead to qualitatively different EoS close to a
first-order phase transition [15,24]. Thermodynamic ob-
servables like heat capacities can, therefore, be completely
different depending on the experimental conditions of the
measurement. Moreover, such inequivalences may survive
at the thermodynamic limit if forces are long ranged as for
self-gravitating objects [3,4]. In fact, the characteristic of
phase transitions in finite systems, and in particular the
occurrence of a negative heat capacity, have first been dis-
cussed in the astrophysical context [2,25,30,66–70]. Since
these pioneering works in astrophysics, an abundant liter-
ature is focused on the understanding of phase transitions
in small systems from a general point of view [15,29,35,
71–76] or in the mean-field context [4,77] or for some spe-
cific systems such as metallic clusters [47,65] or nuclei [78]
and even DNA [79].

7.1 Phase transitions in infinite systems

Let us first recall the definition of phase transitions in
infinite systems. At the thermodynamic limit for short-
range interactions the statistical ensembles are equivalent
and it is enough to reduce the discussion to the ensem-
ble where only one extensive variable AL is kept fixed,
all the others being constrained through the associated
Lagrange parameters. The typical example is the grand-
canonical ensemble where only the volume AL = V is kept
as an extensive variable. Then all the thermodynamics is
contained in the associated potential log Zλ1,...,λL−1

(AL).
Since it is extensive, the potential is proportional to the
remaining extensive variable

logZλ1,...,λL−1
(AL) = ALλL(λ1, . . . , λL−1) (40)

so that all the non-trivial thermodynamic properties are
included in the reduced potential, i.e. the intensive vari-
able

λL = ∂AL
logZλ1,...,λL−1

(AL) =
logZλ1,...,λL−1

AL
(41)

associated with AL. In the grand-canonical case AL = V ,
the reduced potential is the pressure, λL ∝ P , which is
then a function of the temperature and the chemical po-
tential(s). In this limit all the thermodynamics is included
in the single function λL(λ1, . . . , λL−1), and this is why
in the literature p(V ) is often loosely referred to as “the”
EoS, and the existence of many EoS is ignored. If this EoS
is analytical, all the thermodynamic quantities which are
all derivatives of the thermodynamic potential, present
smooth behaviors, and no phase transition appears. A
phase transition is a major modification of the macrostate
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Fig. 4. Schematic representation of a first-order phase transi-
tion in the canonical case. Top: the log of the canonical par-
tition sum (i.e. the free energy) presents an angular point.
Bottom: the first derivative as a function of the temperature
(i.e. the energy) presents a jump.

properties for a small modification of the control parame-
ters (λ1, . . . , λL−1). Such an anomalous behavior can only
happen if the thermodynamic potential presents a singu-
larity. This singularity can be classified according to the
order of the derivative which presents a discontinuity or
a divergence. According to Ehrenfest this is the order of
the phase transition. In modern statistical mechanics, all
the higher-order transitions are called under the generic
name of continuous transitions. Figure 4 schematically il-
lustrates a first-order phase transition in the canonical
ensemble.

7.2 Phase transitions in finite systems

As soon as one considers a finite physical system, all the
above discussion does not apply. First the thermodynamic
potential and observables are not additive, therefore we
cannot introduce a reduced potential. Indeed, the inequal-
ity

λL(λ1, . . . , λL−1,AL) ≡
∂ logZλ1,...,λL−1

(AL)

∂AL

6= logZλ1,...,λL−1
(AL)

AL
(42)

shows that the grand potential per unit volume does no
longer give the pressure and presents a non-trivial volume
dependence. Moreover, the analysis of the singularities of
the thermodynamic potential has no meaning, since it is
an analytical function. The standard statistical-physics
textbooks thus conclude that rigourously speaking there is
no phase transitions in finite systems. However, as we have
already mentioned, first for self-gravitating objects [2,25,
30,66–70] and then in small systems [3,15,29,35,47,71–73,
76,78] it was shown that phase transitions might be associ-
ated with the occurrence of negative microcanonical heat
capacities. This can be generalized to the occurence of an
inverted curvature of the thermodynamic potential of any
ensemble keeping at least one extensive variable AL not or-
thogonal to the order parameter5 [35,80]. In the following
we call this ensemble an extensive ensemble. Then, neg-
ative compressibility or negative susceptibility should be,
like negative heat capacity, observed in first-order phase
transitions of finite systems. In the microcanonical ensem-
ble of classical particles, it was proposed that anomalously
large fluctuations of the kinetic energy, i.e. larger than the
expected canonical value, highlight a negative heat capac-
ity [81]. It was then demonstrated that those two signals
of a phase transition, negative curvatures and anomalous
fluctuations, observed in extensive ensembles where the
order parameter is fixed, are directly related to the ap-
pearance of bimodalities in the distribution of this order
parameter in the intensive ensemble where the order pa-
rameter is only fixed in average through its conjugated
Lagrange multiplier [6,43].

The occurrence of bimodalities is discussed in the liter-
ature since a long time and is often used as a practical way
to look for phase transitions in numerical simulations [17,
46]; however, the general equivalence between negative
curvatures and bimodalities was presented in ref. [43]. For
intensive ensembles, since the pioneering work of Yang
and Lee [42] another definition was proposed considering
the zeroes of the partition sum in the complex intensive
parameter plane [42,82]. The idea is simple: the zeroes of
Z are the singularities of logZ and so phase transitions,
which are singularities, must come from the zeroes of the
partition sum. In a finite system the zeroes of the par-
tition sum cannot be on the real axis since the partition
sum Z is the sum of exponential factors which cannot pro-
duce a singularity of logZ. However, the thermodynamic
limit of an infinite volume may bring the singularity on the
real axis. This is schematically illustrated in fig. 5. Only
regions where zeroes converge towards the real axis may
present phase transitions, while the other regions present
no anomalies. The order of the transition can be associ-
ated with the asymptotic behavior of the zeroes [82].

The distribution of zeroes has been analyzed in ref. [44]
where the transition was studied with a parabolic entropy.
In ref. [45] the equivalence of the expected behavior of the
zeroes in a first-order phase transition case and the occur-
rence of bimodalities in the distribution of the associated
extensive parameter was demonstrated. To be precise, in

5 Orthogonality is here defined using the trace as a scalar
product between observables following sect. 3.
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Fig. 5. Schematic representation of the zeroes of the partition
sum Z in the complex temperature plane. The regions where
no zeroes are coming close to the real axis when the thermo-
dynamic limit is taken will not present singularities of logZ.

this demonstration bimodality means that the extensive
variable distribution can be split at the transition point
into two distributions of equal height, with the distance
between the two maxima scaling like the system size [83].

This global picture of phase transitions in finite sys-
tems is summarized in fig. 6 in the case where energy is
the order parameter of the transition. The occurrence of a
bimodal distribution of the extensive parameter (e.g., en-
ergy) in the associated intensive (e.g., canonical) ensemble
is a necessary and sufficient condition to asymptotically
get the distribution of the Yang-Lee zeroes in the com-
plex Lagrange multiplier (e.g., temperature) plane, which
is expected in a first-order transition. The direction of
bimodality is the direction of the order parameter. This
bimodality is also equivalent to the presence of an anoma-
lous curvature in the thermodynamic potential of the ex-
tensive (microcanonical) ensemble obtained constraining
the bimodal observable to a fixed value. In the extensive
ensemble, the inverted curvature can be spotted looking
for anomalously large fluctuations (e.g., larger than the
canonical ones) of the partition of the extensive variable
(e.g., energy) between two independent subsystems.

8 Statistical description of evolving systems

A major issue in the statistical treatment of finite systems
is that most of the time open and transient systems are
studied. Therefore, they are not only finite in size but also
finite in time and, in fact, they are evolving. The number
of degrees of freedom of a quantum many-body problem
being infinite, it is impossible to have all the information
needed to solve exactly the dynamical problem. Since only
a small part of the observation space is relevant, this time
evolution may also be treated with statistical tools. This is
the purpose of many models: from Langevin approaches to
Fokker-Planck equations, from hydrodynamics to stochas-
tic Time-Dependent Hartree-Fock theory. The purpose of
this paper is not to review those theoretical approaches,
therefore we will not enter here into details about the dif-
ferent recent progresses, and we will rather focus this dis-
cussion on general arguments of time-dependent statistical
ensembles [50,53].

Fig. 6. Schematic representation of the different equivalent
definitions of first-order phase transitions in finite systems.
From top to bottom: the partition sum’s zeroes aligning per-
pendicular to the real temperature axis with a density scaling
like the number of particles; the bimodality of the energy dis-
tribution with a distance between the two maxima scaling like
the number of particles times the latent heat; the appearence
of a back-bending in the microcanonical caloric curve, i.e. a
negative heat capacity region; and the observation of anoma-
lously large fluctuations of the energy splitting between the
kinetic part and the interaction part.

A statistical treatment of a dynamical process is based
on the idea that at any time one can consider only the rel-
evant variables A`, disregarding all the other ones am as
irrelevant. If only the maximum entropy state is followed
in time assuming that all the irrelevant degrees of freedom
have relaxed instantaneously, one gets a generalized mean-
field approach [58]. If the fluctuations of the irrelevant de-
grees of freedom are included, this leads to a Langevin
dynamics [59]. With those considerations one can see that
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statistical approaches can be always improved including
more and more degrees of freedom to asymptotically be-
come exact. However, before including a huge number of
degrees of freedom one should ask himself if only a few
observables can take care of the most important dynam-
ical aspects of the systems we are looking at. In a re-
cent paper [53] it was proposed to introduce observations
at different times (e.g., different freeze-out/equilibration
times) as well as time-odd extensive parameters. The idea
is simple: maximizing the Shannon entropy with different
observables Â` known at different times t` = t0 +∆t` is a
way to treat a part of the dynamics. Going to the Heisen-
berg representation, if we propagate all the Â` to the same
time t0 we get

Â`(t0) = e−i∆t`ĤÂ`e
i∆t`Ĥ (43)

= Â` − i∆t`[Ĥ, Â`] + . . . . (44)

This shows that the time propagation introduces new
constraining operators

B̂` = −i[Ĥ, Â`]. (45)

If Â` is a time-even observable, B̂` is a time-odd operator.
Let us take the example of an unconfined finite system
characterized at a given time by a typical size 〈R̂2〉 = 〈Ŝ〉,
where R̂2 is the one body operator

∑

i r̂
2
i . If the whole

information is assumed to be known at the same time, then
the statistical distribution of events reads in a classical
canonical picture

p(n) =
1

Z
e−βE

(n)
−λS(n)

, (46)

which is formally equivalent to a particle in a harmonic
potential. However, if now we assume that the size infor-
mation is coming from a different time, then according
to eq. (45) we must introduce a new time-odd operator

v̂r = −i[Ĥ, r̂2]. For a local interaction, this reduces to

v̂r = (r̂p̂+ p̂r̂)/m , (47)

which represents a radial flow. Then the classical canonical
probability reads

p(n) =
1

Z
e−β(p

(n)
−h(t)r(n))

2
−λS(n)

(48)

which is a statistical ensemble of particles under a Hub-
blian flow. In the ideal-gas model eq. (48) provides the
exact solution at any time of the dynamics. This sim-
ple example shows that information theory allows to treat
in a statistical picture dynamical processes where observ-
ables are defined at different times, by taking into account
time-odd components such as flows. This might be a tool
to extract thermodynamical quantities from complex dy-
namics. In particular, the above example shows that in an
open system an initial extension in space is always trans-
formed into an expansion, meaning that flow is an essential
ingredient even in statistical approaches.

9 Conclusion

In conclusion, we have presented in this paper the actual
understanding of the thermodynamics of finite systems
from the point of view of information theory. We have put
some emphasis on first-order phase transitions which are
associated with specific and intriguing phenomena as bi-
modalities and negative heat capacities. Phase transitions
have been widely studied in the thermodynamic limit of
infinite systems. However, in the physical situations con-
sidered here, this limit cannot be taken and phase transi-
tions should be reconsidered from a more general point of
view. This is for example the case of matter under long-
range forces like gravitation. Even if these self-gravitating
systems are very large they cannot be considered as in-
finite because of the non-saturating nature of the force.
Other cases are provided by microscopic or mesoscopic
systems built out of matter which is known to present
phase transitions. Metallic clusters can melt before being
vaporized. Quantum fluids may undergo Bose condensa-
tion or a super-fluid phase transition. Dense hadronic mat-
ter should merge in a quark and gluon plasma phase while
nuclei are expected to exhibit a liquid-gas phase transition
and a superfluid phase. For all these systems the theoreti-
cal and experimental issue is how to define and sign a pos-
sible phase transition in a finite system. In this review we
have presented the synthesis of different works which tend
to show that phase transitions can be defined as clearly
as in the thermodynamic limit. Depending upon the sta-
tistical ensemble, i.e. on the experimental situation, one
should look for different signals. In the ensemble where the
order parameter is free to fluctuate (intensive ensemble),
the topology of the event distribution should be studied.
A bimodal distribution signals a first-order phase transi-
tion. The direction in the observable space in which the
distribution is bimodal defines the best order parameter.
To survive the thermodynamic limit, the distance between
the two distributions, the two “phases”, should scale like
the number of particles. This occurrence of a bimodal dis-
tribution is equivalent to the alignment of the partition
sum zeroes as described by the Yang and Lee theorem. In
the associated extensive ensemble, the bimodality condi-
tion is also equivalent to the requirement of a convexity
anomaly in the thermodynamic potential. The first ex-
perimental evidences of such a phenomenon have been re-
ported recently in different fields: the melting of sodium
clusters [6], the fragmentation of hydrogen clusters [8], the
pairing in nuclei [9] and nuclear multifragmentation [7,
84,85]. However, much more experimental and theoretical
studies are now expected to progress in this new field of
phase transitions in finite systems. Three challenges can
thus be assigned to the physics community:

– The statistical description of non-extensive systems
and in particular of open transient finite systems.

– The experimental and theoretical study of phase tran-
sitions in those systems and of the expected abnormal
thermodynamics.

– The confirmation of the observation of the nuclear
phase transition and the analysis of the associated
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equation-of-state properties and the associated phase
diagram.

Appendix A. The Van Hove theorem

Let us consider a system in a volume V for which only
the average value of energy and number of particles is
defined (grand-canonical ensemble). Let us calculate the
grand potential Ω = −T lnZ:

Zβµ(V ) =
∑

n

exp
(

−β
(

H(n) − µN (n)
))

, (A.1)

where the sum extends over all the possible configurations
of the system, H(n) = K(n) + U (n) (N (n)) represents the
energy (number of particles) of the system in the configu-
ration (n), and β, µ are the associated Lagrange multipli-
ers, the inverse temperature and the chemical potential,
respectively. The partition sum results

Zβµ(V ) =

∞
∑

N=0

zNk Zβ(N,V ) (A.2)

with zk = exp(βµ)( 2mπ
h2β )

3/2 the ideal-gas part and

Zβ(N,V ) =
1

N !

∫

V

d3Nr exp (−βU) (A.3)

the partition sum associated with the interaction part. Let
us divide V = mV0 + V1 in m equal boxes of volume V0
separated by “corridors” of width b larger than the range
of the force such that the interactions among particles in
different boxes can be neglected (see fig. 7). The volume
excluded by the corridors is V1. To calculate Zβ(N,V ) let
us consider the number of particles in the corridor N1:

Zβ(N,V ) =
N
∑

N1=0

1

N1!

1

(N −N1)!

∫

V1

d3N1r , (A.4)

∫

V−V1

d3(N−N1)r exp (−βU) . (A.5)

Let us note ε the minimum of the two-body interaction
(see fig. 7); the potential energy in the corridor satisfies
then the inequality UV1

≥ εξN1, where ξ = (b/a)3 repre-
sents the maximum number of particles interacting with a
given particle. For the total potential energy, we can write

U ≥ εξN1 +
1

2

N
∑

i=N1+1

(A.6)

leading to

Zβ(N,V )≤
N
∑

N1=0

1

N1!

1

(N−N1)!
V N1
1 exp (−N1βεξ) , (A.7)

∫

mV0

d3(N−N1)r exp (−βU) , (A.8)

Fig. 7. Schematic representation of the Van Hove theorem
demonstration (left) and the corresponding inter-particle in-
teraction (right).

where the last integrals run over the n-independent vol-
umes V0. Introducing this expression in (A.4) with N2 =
N −N1, the partition sum Zβµ(V ) reads

Zβµ(V ) ≤
∞
∑

N1=0

1

N1!
V N1
1 zN1

k exp (−N1βεξ)

·
∞
∑

N2=0

1

N2!
zN2

k

∫

mV0

d3N2r exp (−βU) (A.9)

= exp
(

zkV1e
−βεξ

)

Zm
βµ(V0), (A.10)

where the last equality stems from the fact that particles
interact only within the same box again because of the

short range of the force. Finally, we get using V1 ∝ mV
2/3
0 :

logZβµ(V ) ≤ kmV
2/3
0 +m logZβµ(V0), (A.11)

logZβµ(V )

V
≤ kV

−1/3
0 +

logZβµ(V0)

V0
, (A.12)

which gives in the thermodynamic limit (keeping m con-
stant) V →∞, V0 →∞, V → mV0,

logZβµ(V )

V
≤ logZβµ(V0)

V0
. (A.13)

On the other side, the opposite inequality is trivially true:

Zβµ(V ) ≥ Zm
βµ(V0) (A.14)

since by neglecting the corridor in the integral (A.5) a pos-
itive term in the partition sum is neglected. In conclusion
we have demonstrated that

logZβµ(V )

V
−→

V and V0 →∞
logZβµ(V0)

V0
. (A.15)

It is very important to stress that this result is true
only for short-range interactions. For these specific sys-
tems the implications of eq. (A.15) can be summarized as
follows:

– A thermodynamic limit exists for these systems if the
thermodynamic potential per unit volume tends to a
constant for large volumes logZβµ(V )/V → ω;
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– In the thermodynamic limit ensembles are equivalent.
Indeed if ω = logZβµ(Vi)/Vi for an arbitrary subsys-
tem Vi, using the fact that average values of exten-
sive variables are first derivatives of logZ (〈A`〉 =
−∂λ`

logZ({λ`})) and variances second derivatives
(σ2` = ∂2λ`

logZ({λ`}), this implies that both are pro-
portional to Vi. Then the average values per unit vol-
ume of extensive variables (ρ` = 〈A`〉/V ) are indepen-
dent of V and the variances of ρ` are inversely pro-
portional to V , approaching zero as V goes to infin-
ity. Since ensembles differ at the level of fluctuations,
this demonstrates the equivalence between ensembles.
For the explicit demonstration of the equality of the
canonical and grand-canonical EoS we refer the reader
to refs. [11,35].
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